Γˆ κοινή ˆ ˆ 1 ο κριτήριο ομοιότητας είναι όμοια.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γˆ κοινή ˆ ˆ 1 ο κριτήριο ομοιότητας είναι όμοια."

Transcript

1 VERSION :37 4_8976 Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδες 0) ii. Να δικαιολογήςετε γιατί τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. (Μονάδες 0) β) Αν το τρίγωνο ΑΒΓ είναι και ισοσκελές με κορυφή το Γ, τότε μπορούμε να ισχυριστούμε ότι τα τρίγωνα ΑΔΒ και ΒΕΑ είναι όμοια; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 5) Υπενθύμιση: Σκαληνό λέγεται ένα τρίγωνο όταν έχει όλες τις πλευρές του άνισες (3. σ.35) α) i.τα τρίγωνα ΑΔΓ και ΒΕΓ έχουν: Γˆ κοινή ˆ ˆ =Ε ( = 90 ) ο κριτήριο ομοιότητας είναι όμοια. ii) Αν τα ΑΔΒ και ΒΕΑ ήταν όμοια, τότε θα είχαν όλες τις γωνίες τους ίσες. Είναι Α Β ˆ = ΑΕΒ ˆ ( = 90 ) Η γωνία ˆΒ του ΑΔΒ δεν μπορεί να είναι ίση με την γωνία ˆΒ του ΕΒΑ αφού Β ˆ ˆ <Β. Αρα θα είναι ιση με την ˆΑ δηλαδή ˆΒ=Α.Ομως ˆ τότε το τρίγωνο ΑΒΓ θα ήταν ισοσκελές (ΑΓ=ΒΓ) που είναι άτοπο αφού μας δίνεται ότι είναι σκαληνό.αρα τα ΑΔΒ και ΒΕΑ δεν είναι όμοια. β) Σε αυτή την περίπτωση τα ΑΔΒ και ΑΕΒ είναι ίσα (υποτείνουσα ΑΒ κοινή και ˆΒ=Α) ˆ άρα και όμοια με λόγο ομοιότητας.

2 4_8985 α) Γνωρίζουμε ότι 3.6 Πόρισμα ΙΙ ότι η κάθετος από το κέντρο του κύκλου στην ΓΔ περνά από το μέσο Μ του ΓΔ. Ομως και η ΑΜ είναι κάθετος στην ΓΔ.Γνωρίζουμε ότι.4 ότι «Από κάθε σημείο ευθείας άγεται μία μόνο κάθετος σε αυτή» Επομένως η ΑΜ και ΟΜ ταυτίζονται που σημαίνει ότι η ΑΒ είναι διάμετρος του κύκλου. Τότε η γωνία ˆΓ θα είναι ορθή ως εγγεγραμμένη που βαίνει σε ημικύκλιο, οπότε στο ορθογώνιο τρίγωνο ΓΑΒ από θεώρημα Ι σ. 83 θα έχουμε ΑΓ = ΑΒ ΑΜ ΑΜ ΑΒ = ΑΓ

3 ii) Τα τρίγωνα ΑΒΓ και ΑΓΜ είναι όμοια γιατί έχουν: ˆΑ κοινή Γ=Β ˆ ˆ ως εγγεγραμμένες που βαίνουν σε ίσα τόξα (το Α μέσο του τόξου ΓΔ επομένως Α = ΑΓ ). Επομένως θα έχουν τις πλευρές τους ανάλογες: ΑΓ ΑΒ ΓΒ = = ΑΜ ΑΓ ΓΜ οπότε από χιαστί ΑΓ ΑΒ = ΑΜ ΑΒ = ΑΓ ΑΜ ΑΓ β) Αν γνωρίζουμε για τις τεμνόμενες χορδές ΑΒ και ΓΔ ότι ισχύει η σχέση ΑΜ ΑΒ = ΑΓ, τότε αν γράψουμε την σχέση αυτή ως αναλογία έχουμε: ΑΒ ΑΓ ΑΜ ΑΒ = ΑΓ = ΑΓ ΑΜ δηλαδή τα τρίγωνα ΑΒΓ και ΑΓΜ έχουν δύο πλευρές ανάλογες μία προς μία και την ˆΑ που περιέχεται στις πλευρές αυτές κοινή, επομένως από Θεώρημα ΙΙ ( ο κριτήριο Ομοιότητας 8.) τα τρίγωνα είναι όμοια επομένως θα έχουν και τις υπόλοιπες γωνίες τους ίσες και ειδικά Β=Γ.Γνωρίζουμε ˆ ˆ όμως ότι αν δύο εγγεγραμμένες γωνίες του ίδιου κύκλου είναι ίσες, τότε θα είναι ίσα και τα τόξα στα οπία βαίνουν (Πόρισμα iii 6.).Επομένως ΑΓ = Α που σημαίνει ότι το Α είναι μέσο του τόξου Γ.

4 4_8994 Αφού ΑΒ=ΔΖ θα είναι και ΒΕ=ΔΖ οπότε το τετράπλευρο ΕΒΖΔ έχει δύο απέναντι πλευρές ίσες και παράλληλες οπότε είναι παραλληλόγραμμο οπότε θα είναι και ΔΕ//ΒΖ. Στο τρίγωνο ΑΝΒ έχουμε ΜΕ//ΝΒ οπότε από θ. Θαλή έχουμε: ΑΜ ΜΝ ΑΒ ΑΕ = = 3 = ΕΒ ΑΒ 3 ΑΜ Από = ΑΜ = ΜΝ ΜΝ Στο τρίγωνο ΓΜΔ έχουμε ΝΖ//ΜΔ οπότε από θ. Θαλή έχουμε: ΓΝ ΜΝ Γ ΓΖ = = 3 = Ζ Γ 3 ΓΝ Από = ΓΝ = ΜΝ ΜΝ

5 β) ΑΓ = ΑΜ + ΜΝ + ΝΓ = ΜΝ + ΜΝ + ΜΝ = 5ΜΝ ΑΓ = 5ΜΝ ΜΝ = ΑΓ 5

6 4_9000 α) Επειδή στο τρίγωνο ΒΜΑ είναι ΔΕ//ΑΜ, από Σημαντική εφαρμογή Θαλή έχουμε: Ε ΒΕ Β = = ΑΜ ΒΜ ΑΒ () Επειδή στο τρίγωνο ΓΕΖ είναι ΑΜ//ΖΕ, από Σημαντική εφαρμογή Θαλή έχουμε: ΕΖ ΕΓ ΖΓ = = ΑΜ ΓΜ ΑΓ () β) Αν προσθέσω κατά μέλη τα πρώτα και δεύτερα μέλη των () και () έχουμε: Ε ΕΖ ΕΓ ΒΕ Ε+ΕΖ ΕΓ+ΒΕ Ε+ΕΖ ΒΓ Ε+ΕΖ ΒΓ Ε+ΕΖ + = + = = = = ΑΜ ΑΜ ΓΜ ΒΜ ΑΜ ΓΜ ΑΜ ΓΜ ΑΜ ΒΓ ΑΜ Ε+ΕΖ= ΑΜ.

7 9006 R α) Οι κύκλοι με κέντρα Κ και Λ έχουν καθένας ακτίνα. R Αρα ΚΜ=ΛΜ= + ρ ΟΜ = R ρ. R R β) Επειδή ΚΜ=ΛΜ= + ρ το τρίγωνο ΚΜΛ είναι ισοσκελές και επειδή ΚΟ = ΟΛ = η ΜΟ είναι διάμεσος, οπότε θα είναι ως γνωστόν και ύψος.επομένως το τρίγνο ΟΜΚ είναι ορθογώνιο.αρα ισχύει σε αυτό το Πυθαγόρειο θεώρημα σύμφωνα με το οποίο έχουμε: R R R R R ΚΜ = ΟΚ + ΟΜ + ρ = + R ρ + ρ + ρ = + R Rρ + ρ R R Rρ = R Rρ 3Rρ = R ρ = ρ =. 3R 3

8 4_9009 Αν ονομάσω Κ το σημείο που βρίσκω αν προεκτείνω την ΑΒ κατά 4 τότε ΑΚ=7 και ΚΕ=4.Αν εφαρμόσουμε Πυθαγόρειο στο ορθογώνιο ΑΚΕ έχουμε ΕΑ = ΑΚ + ΚΕ = = = 65 Αρα ΕΑ = 65 = 5 Αν εφαρμόσουμε Πυθαγόρειο στο ορθογώνιο ΒΑΓ έχουμε ΑΓ = ΑΒ + ΒΓ = = = 09 Αρα ΑΓ = 09 Αν εφαρμόσουμε Πυθαγόρειο στο ορθογώνιο ΔΓΕ έχουμε ΕΓ = Γ + Ε = = = Αρα ΕΓ = Αφού ΕΑ ΑΓ+ΓΕ τα σημεία δεν είναι συνευθειακά

9 β τρόπος Αν ήταν συνευθειακά τότε δύο ορθογώνια τρίγωνα θα είχαν την Α=Γ ως εντός εκτός και επι τα αυτά άρα θα ήταν όμοια και θα είχαν τις πλευρές ανάλογες Ομως = 4 7 4

10 4_903 (σιγά μήν σας την λύσω να μου γίνετε μπιλιαρδόβιοι...) Δύο παίκτες Π και Π παίζουν σε ένα τραπέζι του μπιλιάρδου με διαστάσεις x μέτρα. Μία άσπρη μπάλα τοποθετείται έτσι ώστε, να απέχει,75 μέτρα από την πλευρά ΒΓ και 0,75 μέτρα από την πλευρά ΔΓ, όπως φαίνεται στο σχήμα. Ζ Λ Τ Ο παίκτης Π παίζει πρώτος και χτυπάει την μπάλα Μ έτσι ώστε, να προσκρούσει στο απέναντι μέροσ του τραπεζιού στο σημείο Ε και κατόπιν να μπει στην τρύπα που βρίσκεται στο μέσον της πλευράς ΓΔ. Ο παίκτης Π τοποθετεί την μπάλα Μ πάλι στο ίδιο σημείο εκκίνησης και προτίθεται να χτυπήσει έτσι τη μπάλα ώστε, να προσκρούσει στην πλευρά ΓΔ σε σημείο της Κ και κατόπιν να μπει στην τρύπα στην κορυφή Β (η διαδρομή ΜΚΒ όπως φαίνεται στο σχήμα). Ο συμπαίκτης του ισχυρίζεται ότι αυτό δεν μπορεί να πραγματοποιηθεί και θα χάσει. (Σημείωση: Η γωνία με την οποία χτυπάει η μπάλα σε μία πλευρά ισούται με τη γωνία με την οποία απομακρύνεται) α) Να βρείτε πόσο απέχει το σημείο Ε από την κορυφή Γ του μπιλιάρδου. (Μονάδες ) β) Γιατί ο παίκτης Π ισχυρίζεται ότι θα χάσει ο συμπαίκτης του; Να αιτιολογισετε πλήρως την απάντησή σας. (Μονάδες 3) Λύση Αν ονομάσουμε Τ το μέσο της πλευράς ΓΔ, Ζ την προβολή του Μ στην ΒΓ και Λ την προβολή του στην ΓΔ τότε τα ορθογώνια τρίγωνα ΖΜΕ και ΓΤΕ είναι όμοια γιατί έχουν: ω = ϕ ˆ ˆ ο κριτήριο ομοιότητας είναι όμοια οπότε θα έχουν και τις πλευρές τους ανάλογες Ζ=Γ ΕΓ ΕΖ ΓΤ = ΜΖ και αντικαθιστώντας με τα αριθμητικά δεδομένα:

11 x 0,75 x =,75 β) Ας υποθέσουμε ότι υπάρχει σημείο Κ στο οποίο αν προσκρούσει η μπάλλα θα ανακλαστεί στην τρύπα στο σημείο Β. Τότε τα ορθογώνια τρίγωνα ΛΜΚ και ΓΒΚ θα είναι όμοια γιατί έχουν δύο γωνίες τους ίσες μια προς μία (γωνία πρόσπτωσης ίση με γωνία ανάκλασης και οι ορθές γωνίες ίσες).επομένως θα έχουν και τις πλευρές τους ανάλογες. Ας ονομάσουμε y το μήκος ΛΚ y, 75 y = y = 0,75(,75 y) y = 0,75, y y+ 0,75y = 0,75,75 0,75 0,75,75,75y = 0,75,75 y = y = 0,75, 75 Oμως ΛΤ=ΛΓ-ΤΓ=,75-=0,75. Αρα το Κ συμπίπτει με το Τ στο οποίο όμως υπάρχει τρύπα κι έτσι η μπάλλα δεν θα κυλούσε στην τρύπα αντί να ανακλαστεί.

12 4_906 α) Από τα δεδομένα παίρνουμε: ΑΕ ΑΕ = ΑΓ = 3 ΑΓ 3 Α και Α = ΑΒ = οπότε ΑΕ = Α. Επειδή επιπλέον τα δύο τρίγωνα 3 ΑΒ 3 ΑΓ ΑΒ έχουν ˆΑ κοινή είναι όμοια οπότε θα είναι ίσες και οι υπόλοιπες γωνίες τους και ειδικά ˆ ˆ ΑΕ = ΑΓΒ αφού βρίσκονται απέναντι από τις ομόλογες πλευρές ΑΔ και ΑΒ αντίστοιχα. β) Επιπλέον θα έχουν τις πλευρές του ανάλογες οπότε η αναλογία ΑΕ Α Ε = = ΑΓ ΑΒ ΒΓ ΑΕ Α = ΑΓ ΑΒ συμπληρώνεται ως εξής: Αρα ίσχύει η ΑΕ ΑΓ = Ε ΒΓ γ) Γενικά όχι.μόνο στην περίπτωση που ΑΔ=ΑΕ οπότε και ΑΒ=ΑΓ δηλαδή μόνο στην περίπτωση που τα τρίγων ΑΔΕ και ΑΒΓ είναι ισοσκελή.

13 4_900 γ) Στο τρίγωνο ΑΓΒ επειδή ΚΕ// ΑΓ, από Σ.Ε.Θ έχουμε h ΕΒ = () υ ΑΒ Στο τρίγωνο ΑΒΔ επειδή ΚΕ// ΒΔ, από Σ.Ε.Θ έχουμε h υ ΑΕ = ΑΒ () Προσθέτουμε κατά μέλη τις () και () και έχουμε: h h ΑΕ ΕΒ ΑΕ + ΕΒ ΑΒ h h h υ + υ h υ + = + + = + = = = υ υ υ ΑΒ ΑΒ υ υ ΑΒ υ υ ΑΒ υυ υ + υ

14 4_90 Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο (Ο,R) τέτοιο ώστε να ισχύει α = β + γ. Αν η προέκταση της διαμέσου του ΑΜ τέμνει τον κύκλο στο σημείο Ρ, να αποδείξετε ότι : α) α 3 µ α = (Μονάδες 8) β) α 3 ΜΡ = (Μονάδες 8) 6 γ) (ΑΒΓ)=6 (ΜΡΓ) (Μονάδες 9) α) Από το ο θεώρημα διαμέσων έχουμε: α β + γ = µ α + και αντικαθιστώντας από τα δεδομένα β + γ = α παίρνουμε: α α = µ α + 4α = 4µ α + α 4α α = 4µ α 3α 3α 3α 3α = 4µ α µ α = µ α = µ α =. 4 4 β) Από Θεώρημα Ι (9.7 σ.99) : ΜΒ ΜΓ ΜΑ ΜΡ = ΜΒ ΜΓ ΜΡ = ΑΜ Αντικαθιστώντας 3α ΜΑ = µ α = και α ΜΒ = ΜΓ = έχουμε: αα α ΜΒ ΜΓ α α 3 α 3 α 3 ΜΡ = = = = = = = ΑΜ 3α γ) Αφού τα τρίγωνα ΜΒΑ και ΜΡΓ έχουν Μ ˆ ˆ =Μ ως κατακορυφήν θα έχουμε σύμφωνα με το Θεώρημα ΙΙΙ (0.5 σ.3): 3α ΜΒΑ ΜΒ ΜΑ ΜΑ 6 3α = = = = = 3 ΡΜΓ ΜΡ ΜΓ ΜΡ α 3 3α 6

15 ( ΡΜΓ) ΜΒΑ = ΜΒΑ = ΡΜΓ 3 3 Γνωρίζουμε ότι η διάμεσος ενός τριγώνου το χωρίζει σε δύο ισεμβαδικά τρίγωνα (0.3 Εφαρμογή 3 η σ.6).επομένως ( ΑΒΓ ) = ( ΜΒΑ ) = 3 ( ΡΜΓ ) = 6( ΡΜΓ )

16 4_905 α) Από το θεώρημα Ι (9.7 σ.99) έχουμε Β Β Β ΜΑ ΜΓ = Μ ΜΒ = = 4 β) Από το ο θεώρημα διαμέσων (9.5 σ.95) στο τρίγωνο ΑΔΒ έχουμε: Β ΑΒ + Α = ΜΑ + = ΜΑ + ΜΑ ΜΓ = ΜΑ( ΜΑ + ΜΓ ) = ΜΑ ΑΓ () γ) Από το ο θεώρημα διαμέσων (9.5 σ.95) στο τρίγωνο ΓΔΒ έχουμε: Β ΒΓ + Γ = ΓΜ + = ΓΜ + ΜΑ ΜΓ = ΓΜ ΜΑ + ΜΓ = ΓΜ ΑΓ () Παρόμοια Προσθέτοντας τις () και () παίρνουμε: ΑΒ + Α + ΒΓ + Γ = ΜΑ ΑΓ + ΜΓ ΑΓ = ΑΓ ΜΑ + ΜΓ = ΑΓ ΑΓ = ΑΓ

17 907 Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών του ΑΒ και ΑΓ αντίστοιχα, ώστε Α ΑΕ = = ΑΒ ΑΓ 3. Από το σημείο Α φέρνουμε ευθεία (ε) παράλληλη στη ΒΓ. Η ευθεία (ε) τέμνει τις προεκτάσεις των ΒΕ και ΓΔ στα σημεία Ζ, Η αντίστοιχα. Να αποδείξετε ότι: α) ΔΕ//ΓΒ (Μονάδες 5) β) γ) ΖΕ = ΕΒ. (Μονάδες 7) ΑΖ = ΒΓ. (Μονάδες 7) δ) (ΒΗΖ) = (ΑΒΖ) (Μονάδες 6) α) Αφού μας δίνεται ότι Α ΑΕ =, από το αντίστροφο του θεωρήματος του Θαλή έχουμε: ΑΒ ΑΓ ΔΕ//ΒΓ β) Αφού ΔΕ//ΒΓ και ε//βγ, θα είναι και ΔΕ//ε οπότε και ΔΕ//ΑΖ.Τότε από θ Θαλή στο τρίγωνο ΒΑΖ έχουμε: ΕΖ ΕΒ = Α Β Μας δίνεται ότι Α ΑΒ Α = 3Α = Α + Β 3Α Α = Β Α = Β =. 3 Β () Αρα ΕΖ = ΕΖ = ΕΒ ΕΒ γ) Επειδή ΔΕ//ΑΖ Από Σ.Ε.Θ στο τρίγωνο ΒΑΖ έχουμε: Ε ΑΖ Β = Ε ΑΒ = ΑΖ Β ΑΒ () Επειδή ΔΕ//ΒΓ Από Σ.Ε.Θ στο τρίγωνο ΒΑΖ έχουμε: Ε ΒΓ Α = Ε ΑΒ = ΒΓ Α ΑΒ (3)

18 Από () και () έχουμε: ΑΖ Β = ΒΓ Α ΑΖ = Α ΒΓ και λόγω της () έχουμε: Β ΑΖ = ΒΓ δ) Τα δύο τρίγωνο έχουν το ίδιο ύψος από την κορυφή Β.Με παρόμοιο τρόπο όπως δείξαμε ότι ΑΖ = ΒΓ μπορούμε να δείξουμε ότι ΗΑ = ΒΓ, οπότε ΗΖ=ΑΖ συνεπώς ( ΒΗΖ) ( ΑΒΖ) ΗΖ = = ΑΖ οπότε ( ΒΗΖ ) ( ΑΒΖ) ( ΗΖ) ( ΑΒΖ) = Β =

19 4_909 Δίνεται τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και σημείο Μ της πλευράς του ΑΔ ώστε ΑΜ = Α 3. Από το Μ φέρνουμε παράλληλη προς τισ βάσεις του τραπεζίου, η οποία τέμνει τις ΑΓ και ΒΓ στα σημεία Κ και N αντίστοιχα. Να αποδείξετε ότι: α) ΑΚ = ΑΓ 3 (Μονάδες 6) β) γ) ΚΝ = ΑΒ 3 (Μονάδες 6) ΜΝ = Γ + ΑΒ (Μονάδες 6) 3 3 δ) Ο ισχυρισμός «τα τραπέζια ΑΒΝΜ και ΑΒΓΔ είναι όμοια» είναι αληθής ή ψευδής; Να δικαιολογισετε την απάντησή σας. (Μονάδες 7) α) Στο τρίγωνο ΑΔΓ, αφού ΜΚ//ΔΓ από θεώρημα Θαλή έχουμε: ΑΚ ΑΓ ΑΜ = = Α 3 β) Στο τρίγωνο ΓΑΒ, αφού ΚΝ//ΑΒ από ΣΕΘ (Σημαντική Εφαρμογή Θαλή) έχουμε: ΚΝ ΚΓ ΑΓ ΑΚ ΑΓ ΑΚ = = = = =. ΑΒ ΑΓ ΑΓ ΑΓ ΑΓ 3 3 Αρα ΚΝ = 3 ΚΝ = ΑΒ ΚΝ = ΑΒ ΑΒ 3 3 () γ) Στο τρίγωνο ΑΔΓ, αφού ΜΚ//ΓΔ από ΣΕΘ (Σημαντική Εφαρμογή Θαλή) έχουμε: ΜΚ Γ ΑΜ = = Α 3 Αρα ΜΚ Γ Γ = 3ΜΚ = Γ ΜΚ = = Γ () + ΜΝ = ΜΚ + ΚΝ = Γ + ΑΒ 3 3 δ) Δεν είναι όμοια γιατί ναί μεν έχουν τις γωνίες τους ίσες αλλά οι πλευρές τους δεν είναι ανάλογες.

20 903 Δίνονται δύο κύκλοι (Ο, α) και (Κ, β) με α>β, οι οποίοι εφάπτονται εξωτερικά στο Μ.Φέρνουμε το κοινό εφαπτόμενο τμήμα ΑΒ με Α,Β σημεία των κύκλων (Ο, α) και (Κ, β) αντίστοιχα. Από το Μ Θεωρούμε την κάθετη στο ΑΒ, η οποία τέμνει τα ευθύγραμμα τμήματα ΑΚ και ΑΒ στα σημεία Λ και Ν αντίστοιχα. Να αποδείξετε ότι: α) β) α β ΜΛ = (Μονάδες 8) α+β α β ΛΝ = (Μονάδες 8) α+β γ) Αν Ε και Ε είναι τα εμβαδά των κύκλων (Ο, α) και (Κ, β) αντίστοιχα, τότε Ε = Ε ( ΑΛΝ) ( ΚΜΛ) (Μονάδες 9) Eίναι: ΟΑ ΑΒ ΜΝ ΑΒ ΚΒ ΑΒ ΟΑ//ΜΝ//ΚΒ Επομένως ΜΛ//ΟΑ και ΛΝ//ΚΒ. Επειδή ΜΛ//ΟΑ, από ΣΕΘ (Θεώρημα σ.53) στο τρίγωνο ΚΟΑ έχουμε: ΜΛ ΚΜ ΜΛ β α β = = ΜΛ = ΟΑ ΚΟ α α+β α+β () Επειδή ΛΝ//ΚΒ, από ΣΕΘ (Θεώρημα σ.53) στο τρίγωνο ΑΚΒ έχουμε: ΛΝ ΑΝ = ΚΒ ΑΒ. Επειδή ΟΑ//ΜΝ//ΚΒ, από θεώρημα Θαλή έχουμε: ΑΝ ΑΒ ΟΜ = ΟΚ

21 οπότε ΛΝ = ΟΜ ΚΒ ΟΚ και αντικαθιστώντας ΛΝ α α β = ΛΝ = β α + β α+β () Παρατηρούμε από τις () και () ότι ΜΛ=ΛΝ ΛΜ = ΛΝ (3) Ε πα α α = = = πβ β β Ε (4) Τα τρίγωνα ΑΛΝ και ΚΜΛ έχουν την Λ ˆ ˆ =Λ ως κατακορυφήν άρα από θεώρημα σ.3 θα ισχύει ΑΛΝ (3) ΛΑ ΛΝ ΛΑ = = ΚΜΛ ΛΚ ΛΜ ΛΚ (5) Επειδή ΜΛ//ΟΑ, από θεώρημα Θαλή στο τρίγωνο ΚΟΑ έχουμε: ΛΑ ΛΚ ΜΟ α = = ΜΚ β ΑΛΝ α = β Αρα η (5) γίνεται: ( ΚΜΛ) και πλέον η (4) μπορεί να γραφεί: Ε = Ε ( ΑΛΝ) ( ΚΜΛ) που είναι το ζητούμενο. Σημείωση: Παρόμοια με Γ ΓΕΝΙΚΕΣ του Κεφαλαίου 7 του σχολικού βιβλίου με αλλαγές στα γράμματα και τον συμβολισμό των ακτίνων (φυσικά προτιμώ τα πιο καθιερωμένα R και ρ του σχολικού από τα εδώ α και β...). α β Επιπλέον εκεί το ζητούμενο είναι να δείξουμε ότι ΜΝ = που είναι ένα πολύ ενδιαφέρον και α+β εύκολο να απομνημονευτεί αποτέλεσμα σε ένα βασικό σχήμα. Στην Γ δεν δίνει την ΑΚ και απαιτεί να σκεφτούμε να την φέρουμε μόνοι μας και έτσι γίνεται πιο δύσκολη. Τέλος στην Γ δεν υπάρχει φυσικά το ερώτημα γ) αφού ανήκει στα εμβαδά.(κεφάλαιο 0)

22 4_9034 α) Τα τρίγωνα ΑΜΛ και ΑΒΓ έχουν την γωνία Α κοινή οπότε από Θεώρημα III (0.5 σ.3): ΑΒ ΑΓ ΑΜ ΑΛ 3 = = = ΑΒΓ ΑΒ ΑΓ ΑΒ ΑΓ 3 ( ΑΜΛ) β) Τα τρίγωνα ΒΜΖ και ΑΒΓ έχουν την γωνία Β κοινή οπότε από Θεώρημα III (0.5 σ.3): ΑΒ ΒΓ ΒΜ ΒΖ 3 = = = ΑΒΓ ΒΑ ΒΓ ΑΒ ΒΓ 6 ( ΒΜΖ) Τα τρίγωνα ΓΖΛ και ΑΒΓ έχουν την γωνία Γ κοινή οπότε από Θεώρημα III (0.5 σ.3): ΒΓ ΑΓ ΓΖ ΓΛ 3 3 = = = ΑΒΓ ΒΓ ΓΑ ΒΓ ΓΑ 9 ( ΓΖΛ) ( ΜΖΛ ) = ( ΑΒΓ) ( ΑΒΓ) ( ΑΒΓ) ( ΑΒΓ ) = ( ΑΒΓ ) = ( ΑΒΓ) γ) ΑΜΖΛ ΑΜΛ + ΜΖΛ ΑΜΛ ΜΖΛ = = + = + = + = ΑΒΓ ΑΒΓ ΑΒΓ ΑΒΓ

23 4_9037 Λύση α) Τα ορθογώνια τρίγωνα ΕΑΗ και ΔΑΓ είναι όμοια γιατί έχουν Α κοινή.αρα θα έχουν τις πλευρές ανάλογες απ όπου προκύπτει η σχέση β) Από ο θεώρημα διαμέσων α β + γ = µ α + α 5 α 5α α 5α α 6α β + γ = + β + γ = + = + = = 3α > α 4 Αρα β + γ > α και από Πόρισμα σ.9 η γωνία ˆΑ είναι οξεία. γ) Αφού όπως δείξαμε στο α) ΑΗ Α = ΑΓ ΑΕ αρκεί να δείξουμε ότι ΑΓ ΑΕ = α. Επειδή σύμφωνα με το β) η γωνία ˆΑ είναι οξεία παίρνουμε τον ανάλογο τύπο του Γενικευμένου Πυθαγορείου θεωρήματος και συγκεκριμένα το Θεώρημα Ι σ.89: α = β + γ ΑΓ ΑΕ και αντικαθιστώντας β + γ = 3α (από το β)) α = 3α ΑΓ ΑΕ ΑΓ ΑΕ = α ΑΓ ΑΕ = α.

24 4_9039 Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, Α= ˆ 36 και η διχοτόμος του ΒΔ. α) Να αποδείξετε ότι: i) Τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια. (Μονάδες 6) ii) Α = ΑΓ Γ (Μονάδες 9) β) Αν θεωρήσουμε το ΑΓ ως μοναδιαίο τμήμα (ΑΓ = ), να υπολογίσετε το μήκος του τμήματος ΑΔ και το λόγο Α Γ (Μονάδες 0) α) i) Aφού Α= ˆ 36 θα είναι ˆ ˆ Β=Γ= = = 7 Επειδή ΒΔ διχοτόμος της ˆΒ θα είναι Β ˆ ˆ =Β = 36. οπότε τα ΒΔΓ και ΑΒΓ έχουν: Γˆ κοινή ˆ ˆ Β = Α ο κριτήριο ομοιότητας, είναι όμοια. Αρα θα έχουν τις πλευρές τους ανάλογες Γ Β ΒΓ = = ΒΓ ΑΒ ΑΓ Από την Β = ΒΓ, επειδή ΑΒ=ΑΓ συμπεραίνουμε ότι και ΒΔ=ΒΓ (δηλαδή και το ΒΓΔ ισοσκελές). ΑΒ ΑΓ β) Από το θεώρημα εσωτερικής διχοτόμου στο ΑΒΓ έχουμε: Α ΑΒ = Α ΒΓ = ΑΒ Γ Γ ΒΓ Ομως ΑΒ=ΑΓ οπότε η τελευταία γράφεται Α ΒΓ = ΑΓ Γ Για να φτάσουμε στην ζητούμενη αρκεί να δείξουμε πως ΒΓ=ΑΔ. Εχουμε ήδη δείξει ότι ΒΓ=ΒΔ. Επίσης επειδή το τρίγωνο ΔΑΒ έχει Β ˆ ˆ =Α= 36 θα είναι ισοσκελές με ΒΔ=ΑΔ. Αρα τελικά ΒΓ=ΑΔ και καταλήγουμε στην Α = ΑΓ Γ γ) Πρέπει να μπορέσω να βρώ έναν αριθμό λ ώστε ΑΔ=Λαγ

25 Θα χρησιμοποιήσουμε άλγεβρα.θέτω ΑΓ=α και ΑΔ=x.Επειδή ΔΓ=ΑΓ-ΑΔ η σχέση γράφεται: x = α α x x = α αx x + αx α = 0 = α 4 α = α + 4α = 5α Αρα x Επε, ( 5) α 5α α α 5 α ± ± ± = = = Σημείωση:H άσκηση αυτή υπάρχει στο βιβλίο στην κατασκευή κανονικού δεκαγώνου εγγεγραμμένου σε κύκλου δοθείσης ακτίνας R. Eπίσης έχει σχέση και με το πρόβλημα της Διαίρεσης τμήματος σε μέσο και άκρο λόγο (Χρυσή τομή) Εφαρμογή 3 Η σ0 σχολικού...

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,

ΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ, ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ

Διαβάστε περισσότερα

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε

Θεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:

Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι: GI_V_GEO_4_8976 Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδες 0) ii. Να δικαιολογήσετε

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών

Διαβάστε περισσότερα

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το

ΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το 1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΛΟΓΙΕΣ. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ=5 και ΒΕ=5, να αποδείξετε ότι: α) ΑΓ

Διαβάστε περισσότερα

2ηέκδοση 20Ιανουαρίου2015

2ηέκδοση 20Ιανουαρίου2015 ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα θεμάτων Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της

Διαβάστε περισσότερα

Τάξη A Μάθημα: Γεωμετρία

Τάξη A Μάθημα: Γεωμετρία Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού

Διαβάστε περισσότερα

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ

4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε

Διαβάστε περισσότερα

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;

ΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο; 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν

Διαβάστε περισσότερα

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις

Γεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ )

ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ ) ΘΕΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α λυκείου (ΚΕΦ.3-4-5-6.) 1. Δίνεται ισόπλευρο τρίγωνο ΑΒΓ. Στην προέκταση της ΑΓ προς το Γ παίρνουμε τμήμα ΓΔ=ΑΓ. Έστω Ε τυχαίο σημείο της πλευράς ΒΓ και Ζ σημείο της προέκτασης της ΓΒ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα

Διαβάστε περισσότερα

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και

ΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο

Διαβάστε περισσότερα

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.

Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ

ΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ 1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου

Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΕΛ ΕΡΕΤΡΙΑΣ 9/6/016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας, τη λέξη Σωστό ή Λάθος,

Διαβάστε περισσότερα

VERSION :00. α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο

VERSION :00. α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο VERSION 16-11-014 17:00 _18975 α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο του οποίου η απόσταση από κάθε κορυφή είναι τα 3 του μήκους της αντίστοιχης

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων

Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων ASKISOPOLIS Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης, Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία, Μάκος Σπύρος Μαρωνίτη Ειρήνη, Μαρωνίτης Λάμπρος

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.

Διαβάστε περισσότερα

Κεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών

Διαβάστε περισσότερα

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015

Γεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015 Τράπεζα Θεμάτων 8 -//0 ο Θέμα Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Θεωρήματα διχοτόμων..8.δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της γωνίας και Φέρουμε τις διχοτόμους

Διαβάστε περισσότερα

ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ

ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ ΑΙΟ ΠΑΡΑΤΗΡΗΣΕΙΣ - ΥΠΟΔΕΙΞΕΙΣ Για να είναι όμοια δυο τρίγωνα αρκεί να ισχύει ένα από τα παρακάτω: ΐ) Να έχουν 2 γωνίες ίσες μία προς μία. (Ασκήσεις: Εμπέδωσης 1). ϊϊ) Να έχουν δυο πλευρές ανάλογες και

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB

Διαβάστε περισσότερα

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ 1 ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 3 ο ΤΡΙΓΩΝΑ ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΑΣΚΗΣΗ 1 η Έστω ΑΒΓ ένα ισοσκελές τρίγωνο (ΑΒ = ΑΓ), Δ, Ε σημεία της πλευράς ΒΓ τέτοια, ώστε ΒΔ = ΔΕ = ΕΓ και Μ, Ρ τα μέσα των πλευρών ΑΒ, ΑΓ

Διαβάστε περισσότερα

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)

και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου

Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,

Διαβάστε περισσότερα

8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version ) 8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version 3-8-205) Σ.Να αποδείξετε ότι δύο τραπέζια με ανάλογες βάσεις και τις προσκείμενες σε δύο ομόλογες βάσεις τους γωνίες ίσες μία προς μία, είναι όμοια. Θεωρούμε τα τραπέζια ΑΒΓΔ

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ

ΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και

Διαβάστε περισσότερα

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια

5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε

Διαβάστε περισσότερα

Κεφάλαιο 9 Ο κύκλος Ορισμός. Ο κύκλος (Κ, r) με κέντρο Κ και ακτίνα r είναι το σχήμα που αποτελείται από όλα τα σημεία του επιπέδου που απέχουν απόσταση r από το σημείο Κ. Σχήμα 9.1: Στοιχεία ενός κύκλου.

Διαβάστε περισσότερα

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ 1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα

Γεωμετρία Α' Λυκείου Κεφάλαιο 3 ο (Τρίγωνα) Γεωμετρία Αˊ Λυκείου. Κεφάλαιο 3 ο Τρίγωνα Γεωμετρία Αˊ Λυκείου Κεφάλαιο 3 ο Τρίγωνα Κεφάλαιο 3 ο :Τρίγωνα 1. Τι λέγονται κύρια στοιχεία ενός τριγώνου; Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου. Για ευκολία οι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ

Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Β. ΜΕΘΟ ΟΛΟΓΙΑ ΑΣΚΗΣΕΩΝ Οµοιότητα Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Όµοια λέγονται δύο πολύγωνα που έχουν τις πλευρές τους ανάλογες και τις αντίστοιχες γωνίες τους ίσες. Λόγος οµοιότητας δύο όµοιων πολυγώνων λέγεται ο λόγος δύο

Διαβάστε περισσότερα

Γεωμετρία. Κεφ 1 ο : Γεωμετρια.

Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε

Διαβάστε περισσότερα

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.

6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ. 1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε

Διαβάστε περισσότερα

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ... Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο

Διαβάστε περισσότερα

1=45. β) Να υπολογίσετε τη γωνία φ.

1=45. β) Να υπολογίσετε τη γωνία φ. 1. Στο σχήµα που ακολουθεί, η Αx είναι εφαπτοµένη του κύκλου (Ο, ρ) σε σηµείο του Α και επιπλέον ισχύουν ΓΑ x =85 0 και BA =40 0. α) Να αποδείξετε ότι ˆΒ 1=45. β) Να υπολογίσετε τη γωνία φ. 2. Στο ακόλουθο

Διαβάστε περισσότερα

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.

Όμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο )

ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -10 ο. 2_19005 ΘΕΜΑ Β (7 ο -9 ο ) 0 05 ΓΕΩΜΕΤΡΙΑ Β ΓΕΛ. ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΝ ΥΑΣΤΙΚΑ ΘΕΜΑΤΑ -ΚΕΦΑΛΑΙΑ:7 ο -8 ο -9 ο -0 ο _9005 ΘΕΜΑ Β (7 ο -9 ο ) Σε τρίγωνο ΑΒΓ η διχοτόµος της γωνίς Αˆ τέµνει την πλευρά ΒΓ σε σηµείο, τέτοιο ώστε Β 3 =

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130

ΣΗΜΕΙΩΣΗ. Λύση: Β=Γ= = = = 50 2 2 2 ˆ ˆ 180 Γ 180 50 130 ΣΗΜΕΙΩΣΗ Οι λύσεις των θεμάτων είναι ενδεικτικές.πιθανόν να υπάρχουν και άλλες λύσεις και μάλιστα πιο απλές. ΘΕΜΑ 2 2814 α) Αφού ΑΒΓ ισοσκελές 180 ˆ ˆ ˆ Α 180 80 100 Β=Γ= = = = 50 2 2 2 Επειδή ΒΕ=ΒΔ θα

Διαβάστε περισσότερα

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία

Διαβάστε περισσότερα

Αποδεικτικές Ασκήσεις (Version )

Αποδεικτικές Ασκήσεις (Version ) Αποδεικτικές Ασκήσεις (Version 30-8-05) Α. O παρατηρητής ΑΒ βλέπει το φως του λαμπτήρα Γ μέσα από τον καθρέπτη Κ. Να υπολογίσετε το ύψος του φανοστάτη ΔΓ, όταν είναι ΔΚ=3m, ΑΚ=m και το ύψος του παρατηρητή,70m.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες. ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΑ ΓΙΑ ΤΟΝ ΔΙΑΓΩΝΙΣΜΟ «ΘΑΛΗΣ» ΤΑΞΗ Α ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΓΕΩΜΕΤΡΙΑ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ 1. Μεσοκάθετος ενός ευθύγραμμου τμήματος ΑΒ ονομάζεται η ευθεία που είναι κάθετη

Διαβάστε περισσότερα

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ

ΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι

Διαβάστε περισσότερα

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο

Διαβάστε περισσότερα

Ασκήσεις - Πυθαγόρειο Θεώρηµα

Ασκήσεις - Πυθαγόρειο Θεώρηµα Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο

Διαβάστε περισσότερα

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι

Διαβάστε περισσότερα

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version )

ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version ) 4.6-4.8 ΣΥΝΘΕΤΑ ΘΕΜΑΤΑ (version 5--06) Σ. Δίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και τυχαίο σημείο Δ της πλευράς ΑΒ. Στην προέκταση της ΓΑ προς το Α, παίρνουμε τμήμα ΑΕ = ΑΔ. Να αποδείξετε ότι ΔΕ ΒΓ. ος

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα

3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 3o ΚΕΦΑΛΑΙΟ : Τρίγωνα 4 η διδακτική ενότητα : Ισότητα τριγώνων Ερωτήσεις κατανόησης 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις : α) Υπάρχουν σημεία του επιπέδου που

Διαβάστε περισσότερα

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας.

Θεώρημα Ι Η διάμεσος ορθογωνίου τριγώνου που φέρουμε από την κορυφή της ορθής γωνίας είναι ίση με το μισό της υποτείνουσας. ΠΡΟΛΟΓΟΣ Τα πιο κάτω θεωρήματα καθώς και το Θεώρημα Ι σ. 104 είναι SOS όχι μόνο για θεωρία αλλά και για χρήση στις ασκήσεις, οπότε πρέπει να κατανοήσετε τι λένε, να ξέρετε την απόδειξη και να είστε έτοιμοι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης

ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43. Ύλη: Όλη η ύλη ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ 43 Ον/μο:.. Α Λυκείου Ύλη: Όλη η ύλη 08-05-16 Θέμα 1 ο : Α. Σε ποιες κατηγορίες ταξινομούνται τα τρίγωνα με βάση τις πλευρές τους και σε ποιες με βάση τις γωνίες τους; (αναλυτικά)

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: β) Τα τρίγωνα ΑΕ και ΑΖ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) i. τα τρίγωνα

Διαβάστε περισσότερα

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.

A λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ. 1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β

Διαβάστε περισσότερα

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15) Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014) ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ

ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του

Διαβάστε περισσότερα

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ.

ΒΕ Ζ είναι ισόπλευρο. ΔΕΡ. ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΩΕΚΑΝΗΣΟΥ ΘΕΜΑ 1 Θεωρούμε το ισόπλευρο τρίγωνο ΑΒΓ και έστω ένα σημείο της πλευράς ΑΓ. Κατασκευάζουμε το παραλληλόγραμμο ΒΓΕ και έστω Ζ η τομή της Ε με την ΑB. Ονομάζουμε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ ΣΗΜΕΙΩΣΕΙΣ 7ου ΚΕΦΑΛΑΙΟΥ Διατυπώστε το θεώρημα του Θαλή, κάνετε σχήμα και γράψτε την αναλογία που εκφράζει το θεώρημα του Θαλή στο συγκεκριμένο σχήμα. Απάντηση: «Αν τρείς τουλάχιστον παράλληλες ευθείες

Διαβάστε περισσότερα

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα.

2. ίνεται ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) και οι διχοτόµοι του Β και ΓΕ. Αν ΕΗ ΒΓ και Ζ ΒΓ, να αποδείξετε ότι: α) Τα τρίγωνα Β Γ και ΓΕΒ είναι ίσα. 1. Από εξωτερικό σηµείο Σ κύκλου (Κ,ρ) θεωρούµε τις τέµνουσες ΣΑΒ και ΣΓ του κύκλου για τις οποίες ισχύει ΣΒ=Σ. Τα ΚΛ και ΚΜ είναι τα αποστήµατα των χορδών ΑΒ και Γ του κύκλου αντίστοιχα. α) Να αποδείξετε

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια

ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ

ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ Η ΓΕΩΜΕΤΡΙΑ της Α τάξης του ΕΠΑΛ με Φύλλα Μαθήματος & Εργασίας - ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ 014 ΦΥΛΛΟ ΜΑΘΗΜΑΤΟΣ & ΕΡΓΑΣΙΑΣ ΓΕΩΜΕΤΡΙΑ Α ΕΠΑΛ ΚΕΦΑΛΑΙΟ 3 3.1-3.6 Τρίγωνα ΕΠΑΛ ΚΑΛΑΜΑΡΙΑΣ Ονομασία Πλευρών ΑΒ ή ΒΑ ή γ

Διαβάστε περισσότερα

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ

ΘΕΜΑ 2 Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=2ΒΓ. Προεκτείνουμε την πλευρά ΑΔ (προς το μέρος του Δ) κατά τμήμα ΔΕ=ΑΔ και φέρουμε την ΒΕ που τέμνει τη ΔΓ στο σημείο Η. Να αποδείξετε ότι: α) το τρίγωνο ΒΑΕ είναι ισοσκελές.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΙΟΥΝΙΟΣ 2016 (version ΤΕΛΙΚΟ)

ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΙΟΥΝΙΟΣ 2016 (version ΤΕΛΙΚΟ) ΣΗΜΕΙΩΣΕΙΣ ΜΕΛΕΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΙΟΥΝΙΟΣ 06 (version 9-5-06 ΤΕΛΙΚΟ) SOS ΒΓ = ΒΟΓ ˆ = 70 αντί του λανθασμένου 35 στο προτελευταίο θέμα θεωρίας με τις εγγεγραμμένη, επίκεντρη κλπ Τι λέει το αίτημα παραλληλίας;

Διαβάστε περισσότερα

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ

ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ. 2ο ΘΕΜΑ ΙΣΟΣΚΕΛΕΣ ΤΡΙΓΩΝΟ ΜΕΣΟΚΑΘΕΤΟΣ - ΔΙΧΟΤΟΜΟΣ 5029 Έστω κυρτό τετράπλευρο ΑΒΓΔ με και α) β) Το τρίγωνο ΑΔΓ είναι ισοσκελές μ 10 γ) Η ευθεία ΒΔ είναι μεσοκάθετος του τμήματος ΑΓ μ 7 5619 Δίνεται γωνία χαy και

Διαβάστε περισσότερα

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων

Γεωμετρία Α' Λυκείου Κεφάλαιο 4 ο (Παράλληλες ευθείες) Λύσεις Διαγωνισμάτων Λύσεις Διαγωνισμάτων Λύσεις 1 ου Διαγωνίσματος Θέμα 1 ο α) Από μία κορυφή, π.χ. την Α, φέρουμε ευθεία xy ΒΓ. Τότε ω = Β και φ = Γ, ως εντός εναλλάξ των παραλλήλων xy και ΒΓ με τέμνουσες ΑΒ και ΑΓ αντίστοιχα.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος ) Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

Κόλλιας Σταύρος 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Κόλλιας Σταύρος  1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Κόλλιας Σταύρος http://users.sch.gr/stkollias 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΑΠΕΡΙΟΥ ΔΕΥΤΕΡΑ 4 ΙΟΥΝΙΟΥ 7 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ Θέμα 1 Α. Να αποδείξετε ότι κάθε σημείο της διχοτόμου

Διαβάστε περισσότερα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα Γ Ε Ω Μ Ε Τ Ρ Ι Α Β Λ Υ Κ Ε Ι Ο Υ Συνοπτική θεωρία Οι σημαντικότερες αποδείξεις Ερωτήσεις αντικειμενικού τύπου Ασκήσεις Διαγωνίσματα Μαθηματικός Περιηγητής 1 ΚΕΦΑΙΑΟ 9 ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΙΑ

Διαβάστε περισσότερα

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»

ΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος» ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του

Διαβάστε περισσότερα

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)

α) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10) Θεωρούμε τρίγωνο ΑΒΓ με ΑΒ=9 και ΑΓ=15. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. ΑΔ 2 ΑΕ α) Να αποδείξετε ότι

Διαβάστε περισσότερα

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση.

β. Η πλευρά που βρίσκεται απέναντι από την κορυφή του ισοσκελούς τριγώνου καλείται βάση. 1 Τρίγωνα 11 Στοιχεία και είδη τριγώνων 111 Κύρια στοιχεία τριγώνου Οι πλευρές και οι γωνίες ενός τριγώνου λέγονται κύρια στοιχεία του τριγώνου Συγκρίνοντας τις πλευρές του τριγώνου μεταξύ τους προκύπτουν

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29

Διαβάστε περισσότερα